Sunday, October 12, 2014

Losses in optical fiber link

Light traveling in an optical fiber loses power over distance. The loss of power depends on the wavelength of the light and on the propagating material. For silica glass, the shorter wavelengths are attenuated the most. The lowest loss occurs at the 1550-nm wavelength, which is commonly used for long-distance transmissions.

Transmission of light by fiber optics is not 100% efficient. There are several reasons for this including absorption by the core and cladding (caused by the presence of impurities) and the leaking of light from of the cladding. When light reflects off the cladding /core interface it actually travels for a short distance within the cladding before being reflected back. This leads to attenuation (signal reduction) by up to 2db/Km for a multi-mode fiber. For example, with this level of attenuation, if light travelled over 10kM of cable only 10% of the signal would arrive at the following end.

The loss of power in light in an optical fiber is measured in decibels (dB). Fiber optic cable specifications express cable loss as attenuation per 1-km length as dB/km. This value is multiplied by the total length of the optical fiber in kilometers to determine the fiber's total loss in dB.
Optical fiber link loss is caused by a number of factors
  • Modal and chromatic dispersion
  • Connector
  • Splice
  • Fiber attenuation

Modal and chromatic dispersion

Modal Dispersion

Modal Dispersion is the distortion in fiber or waveguide. Signal is spread due to different propagation velocity of optical signal in different mode.
Intermodal dispersion (also called modal dispersion) is the phenomenon that the group velocity of light propagating in a multimode fiber (or other waveguide) depends not only on the optical frequency (chromatic dispersion) but also on the propagation mode involved.
Intermodal dispersion results from different propagation characteristics of higher-order transverse modes in waveguides, such as multimode fibers. This effect can severely limit the possible data rate of a system for optical fiber communications based on multimode fibers.
Intermodal dispersion (also called modal dispersion) is the phenomenon that the group velocity of light propagating in a multimode fiber (or other waveguide) depends not only on the optical frequency (chromatic dispersion) but also on the propagation mode involved.

Chromatic Dispersion

Chromatic dispersion (or material dispersion) is produced when different frequencies of light propagate in fiber with different velocities. Chromatic dispersion is larger for the wider source bandwidth. Thus it is largest for LEDs and smallest for LASERs. LED BW is about 5% of λ0, Laser BW about 0.1 % or below of λ0.
In addition to chromatic dispersion, there exists also waveguide dispersion that is significant for single mode fibers in longer wavelengths.  Chromatic and waveguide dispersion are denoted as Intra- modal dispersion and their effects cancel each other at a certain wavelength. Total dispersion is determined as the geometric sum of intra-modal and inter-modal (or mode) dispersion with the net pulse spreading.
Chromatic and wave-guide dispersion cancel each other at certain wavelength

Total Dispersion

Total dispersion is determined as the geometric sum of intra-modal and inter-modal (or mode) dispersion with the net pulse spreading:


Splice loss occurs at all splice locations. Mechanical splices usually have the highest loss, commonly ranging from 0.2 to over 1.0 dB, depending on the type of splice. Fusion splices have lower losses, usually less than 0.1 dB. A loss of 0.05 dB or less is usually achieved with good equipment and an experienced splicing crew. High loss can be attributed to a number of factors, including:
  1. Poor cleave
  2. Misalignment of fiber cores
  3.  An air gap
  4. Contamination
  5. Index-of-refraction mismatch
  6. Core diameter mismatch to name just a few.


Losses at fiber optic connectors commonly range from 0.25 to over 1.5 dB and depend greatly on the type of connector used. Other factors that contribute to the connection loss include:
  1. Dirt or contaminants on the connector (very common)
  2. Improper connector installation
  3. A damaged connector face
  4. Poor scribe (cleave)
  5. Mismatched fiber cores
  6. Misaligned fiber cores
  7. Index-of-refraction mismatch

Fiber Attenuation

Attenuation means loss of light energy as the light pulse travels from one end of the cable to the other. It is also called as signal loss or fiber loss. It also decides the number of repeaters required between transmitter and receiver. Attenuation is directly proportional to the length of the cable.

Attenuation is defined as the ratio of optical output power to the input power in the fiber of length L.
 α= 10log10 Pi/Po [dB/km]
Where,   Pi= Input Power
               Po= Output Power, α is attenuation constant
Fiber Attenuation

The various losses in the cable are due to
  1.  Bending
  2. Absorption
  3.  Scattering

Bending Loss

Bend loss occurs at fiber cable bends that are tighter than the cable's minimum bend radius. Bending loss can also occur on a smaller scale from such factors as:
  1. Sharp curves of the fiber core
  2. Displacements of a few millimeters or less, caused by buffer or jacket imperfections
  3. Poor installation practice

This light power loss, called micro-bending, can add up to a significant amount over a long distance. The loss which exists when an optical fiber undergoes bending is called bending losses.

There are two types of bending:

Macroscopic bending

Bending in which complete fiber undergoes bends which causes certain modes not to be reflected and therefore causes loss to the cladding.
Macroscopic bending

Microscopic Bending

Either the core or cladding undergoes slight bends at its surface. It causes light to be reflected at angles when there is no further reflection.

Microscopic Bending


In the telecom region of the spectrum, caused primarily by excitation of chemical bond vibrations. Overtone and combination bands predominate near 1550 nm. Low-energy tail of electronic absorption dominate in visible region. Electronic absorption by color centers cause loss for some metal impurities.

There are two types of absorption:
  1. Intrinsic Absorption
  2. Extrinsic Absorption

Intrinsic Absorption

  • Caused by the interaction with one or more components of the glass
  • Occurs when photon interacts with an electron in the valence band & excites it to a higher energy level near the UV region.

Extrinsic Absorption

  •   Also called impurity absorption.
  • Results from the presence of transition metal ions like iron, chromium, cobalt, copper & from OH ions i.e. from water.


It occurs due to microscopic variations in the material density, com-positional fluctuations, structural in homo geneities and manufacturing defects.

Scattering are two types
  •  Linear Scattering

§  Rayleigh Scattering losses
§  Mie Scattering Losses
§  Wave-guide Scattering Losses
  • Non-linear Scattering

§  Stimulated Brillouin Scattering(SBS)
§  Stimulated Raman Scattering(SRS)

Rayleigh scattering Losses

  1. These losses are due to microscopic variation in the material of the fiber.
  2. Unequal distribution of molecular densities or atomic densities leads to Rayleigh scattering losses
  3. Glass is made up of several acids like SiO2, P2O5, etc. compositions, fluctuations can occur because of these several oxides which rise to Rayleigh scattering losses.

Mie Scattering Losses

These losses results from the compositional fluctuations & structural in homo generics & defects created during fiber fabrications, causes the light to scatter outside the fiber.

Waveguide Scattering Losses

It is a result of variation in the core diameter, imperfections of the core cladding interface, change in RI of either core or cladding.

SBS Scattering:

  1. Stimulated Brillouin Scattering (SBS) may be regarded as the modulation of light through thermal molecular vibrations within the fiber.
  2. Pb = 4.4x10-3d2λ2α dB v watts
            Where, λ= operating wavelength (μm)
                        d= fiber core diameter (μm)
                        v = source bandwidth in (GHz)

SRS Scattering

  1. Stimulated Raman Scattering is similar to SBS except that high frequency optical phonon rather than acoustic phonon is generated in scattering processes.
  2. Pb = 5.9x10-2 d2λα dB watts


Fiber optic network backbone in Bangladesh

Establishment of fiber optic links in Bangladesh began in 1986, along with the installation of new digital switches.  Starting with the optical fiber link between Dhaka’s Maghbazar and Gulshan telephone exchanges, all intra-city inter- exchange connections are now established through short distance fiber-optic links.  The intercity portions between the major cities started with the completion of the STM-16 fiber link between Dhaka to Chittagong in 2001.  Bogra to Joypurhat to Ragpur and Dinajpur in the north west of Bangladesh is already connected by STM-4 optical link while Dhaka to Bogra optical fiber link via the Jamuna Bridge is currently under construction.  In addition, there is a plan to connect Dhaka to Sylhet and Dhaka to Khulna on the optical fiber network.

Bangladesh’s Grameenphone has opened a new fiber optic cable link through the 4.8 kilometer long Jamuna Multipurpose Bridge becoming the first mobile phone operator in the country to do so. The fiber optic cable links Elenga in Tangail and Nolka in Sirajganj and covers a length of about 40 kilometers through the Jamuna Bridge. This link completes the Grameenphone fiber optic transmission backbone between the East and West zones of the country. The fiber-optic transmission backbone will ensure a more secure network providing high quality voice and data services in the Northern and Southern districts.

In the last three years BTTB built about 1375 Km optical fiber network in the country under two projects. The most modern SDH technology was adopted in all these optical fiber links. Dhaka – Comilla – Feni – Chittagong backbone optical link and Feni – Choumuhini – Noakhali, Choumuhini – Lakshmipur, Comilla – B. Baria spur optical links were implemented under Dhaka – Chittagong high capacity optical fiber project. The total length of optical cable laid under this project is about 450 Km. 18 core optical cables were used in backbone link whereas spur links were built with 12 core O.F cables. The transmission capacity of the backbone is 2.5 GB/s (STM-16). Transmission capacity of Feni – Choumihini spur link is 622 MB/s (STM-4) whereas the transmission capacity of Choumuhini – Noakhali, Choumuhini - Lakshmipur and Comilla – B. Baria spur links is 155 MB/s (STM-1). Some short haul optical links like Tongi – Gazipur and B.Baria Microwave Station – B.Baria Exchange of STM-1 capacity were also built under this project. The SDH transmission equipment used in this network are from Alcatel CIT. Under the project entitled “Installation and Expansion of Digital Telephone Exchanges in various District Head Quarters of Bangladesh” which is commonly known as 216 KL project, about 925 Km 12 core optical fiber cable network was built. The SDH transmission equipment used in this network are also from Alcatel CIT. The backbone optical link built under this project is Bogra – Palashbari – Rangpur – Saidpur – Dinajpur – Thakurgaon – Panchagarh. Bogra – Palashbari – Rangpur portion of this backbone is of STM-4 capacity and rest is of STM-1 capacity. Now the present requirement of E1 claims that the Rangpur – Saidpur – Dinajpur section of the link should be upgraded to STM-4. Some spur links also were built in different areas of the country under 216 KL project.
Map of the existing fiber-optic network in Bangladesh



High-speed (up to 2.5 Gbps) synchronous network specification developed by Bellcore and designed to run on optical fiber. STS-1 is the basic building block of SONET. Approved as an international standard in 1988. On a larger scale, the telecommunications industry uses the SONET standard for optical transport of TDM data. SONET, used in North America, is related standards that specify interface parameters, rates, framing formats, multiplexing methods, and management for synchronous TDM over fiber.

SONET is the American National Standards Institute standard for synchronous data transmission on optical media. The international equivalent of SONET is synchronous digital hierarchy (SDH). Together, they ensure standards so that digital networks can interconnect internationally and that existing conventional transmission systems can take advantage of optical media through tributary attachments.

SONET provides standards for a number of line rates up to the maximum line rate of 9.953 gigabits per second (Gbps). Actual line rates approaching 20 gigabits per second are possible. SONET is considered to be the foundation for the physical layer of the broadband ISDN (BISDN).

Asynchronous transfer mode runs as a layer on top of SONET as well as on top of other technologies. SONET defines a base rate of 51.84 Mbps and a set of multiples of the base rate known as "Optical Carrier levels (OCx)."

The figure displays an example of statistical TDM. SONET takes n bit streams, multiplexes them, and optically modulates the signal, sending it out using a light emitting device over fiber with a bit rate equal to (incoming bit rate) x n. Thus traffic arriving at the SONET multiplexer from four places at 2.5 Gb/s goes out as a single stream at 4 x 2.5 Gb/s, or 10 Gb/s. This principle is illustrated in the figure, which shows an increase in the bit rate by a factor of four in time slot T.


Thursday, May 15, 2014

Switchgear Equipment in a Substation

Introduction of Visited Substation

Substation Location:  Division-1, Electric Supply, Amberkhana, Sylhet
Distributed Area: Amberkana, Shahi-Eidgah, Dorga-Mohalla, Mirermoydan, SubidBazar,                                                       Patantula, Ahakalia, Airport, Baghbhari.


A substation may be defined as “assembly of apparatus which transfers characteristics of electrical energy from one to another for example from alternating current to direct current or from one to another.” Every electrical circuit needs a switching device and protective device. They are together called Switchgear. These are located in the substation.

Why we need Sub-station

For economical transfer electrical energy or to meet various demand of the load, we require sub-station.

Fig: an outdoor Substation

Schematic Power System Diagram

Fig: Schematic Power System Diagram

Why we need to know about Switchgear

All electrical equipment and circuits have to be protected by protective devices against damages arising abnormal conditions.

Switchgear equipment which is used in Amberkhana Substation

High & Low voltage switchgear panel

  Ø  Current Transformer
  Ø  Potential Transformer
  Ø  Circuit Breaker
                        o   Vacuum Breakers
o   SF6 Breakers
  Ø  Air break Switch
  Ø  Isolator 
  Ø  Oil switch
  Ø  Relays

Incoming & Outgoing switchgear

  Ø  Surge Arrestor
  Ø  Fuses

Current Transformer (CT)

A current transformer is an instrument transformer, used along with measuring or protective devices, in which the secondary current is proportional to the primary current (under normal conditions of operation) and differs from it by an angle which is approximately zero.

Fig: Current Transformer

Why we use C.T in a sub-station

Current T/F is used for protection and metering purposes. It steps down the current level of the line for following purposes.

   Ø  Measurement: ammeter, kw meter, kwh meter, power factor meter
   Ø  Control and protection: current when exceeds the set value operates the relay which senses the faulty condition.

 Potential Transformer (PT)

Potential Transformer or Voltage Transformer gets used in electrical power system for stepping down the system voltage to a safe value which can be fed to low ratings meters and relays. Commercially available relays and meters used for protection and metering, are designed for low voltage. 

Fig: Potential Transformer 

Why we use P.T in a sub-station

It steps down the voltage level of line for -
   Ø  Measurement: voltmeter, frequency meter , kw meter, kwh meter , power factor meter
   Ø  Control & protection: used in directional over current protection and under  frequency relay operation (48.8 Hz , df/dt relay)

Circuit Breakers

A circuit breaker is equipment which can open or close a circuit under all conditions, such as: no loads, full loads or fault condition.

Circuit breakers inter locking system at normal condition

When closing:
   Ø  Open earthlings switch
   Ø  Close isolator
   Ø  Then close circuit breaker

When opening
   Ø  First to open circuit breaker
   Ø  Next to open isolator
   Ø  Then the earthlings switch to close

Vacuum breakers

Vacuum circuit breakers are used mostly for low and medium voltages. Vacuum interrupters are developed for up to 36 kV and can be connected in series for higher voltages. The interrupting chambers are made of porcelain and sealed. They cannot be open for maintenance, but life is expected to be about 20 years, provided that the vacuum is maintained. Because of the high dielectric strength of vacuum, the interrupters are small. The gap between the contacts is about 1 cm for 15 kV interrupters, 2 mm for 3 kV interrupters.

Fig: Vacuum breakers

Advantage of Vacuum Circuit Breaker
   Ø  no oil is required for are quenching
   Ø  least maintenance
   Ø  compact size
   Ø  light in weight

Sulfur Hexafluoride (SF6) Circuit Breaker

Sulfur Hexafluoride (SF6) is an excellent gaseous dielectric for high voltage power applications. It has been used extensively in high voltage circuit breakers and other switchgears employed by the power industry. Applications for SF6 include gas insulated transmission lines and gas insulated power distributions. The combined electrical, physical, chemical and thermal properties offer many advantages when used in power switchgears. Some of the outstanding properties of SF6 making it desirable to use in power applications are:
   Ø  High dielectric strength
   Ø  Unique arc-quenching ability
   Ø  Excellent thermal stability
   Ø  Good thermal conductivity

Fig: Sulfur Hexafluoride (SF6) Circuit Breaker 

Air Breaker Switch

An "air break switch' is a switching device that uses air the dielectric. Air break switches can be single pole or 'gang operated', and can be operated manually (using either a handle/ratchet mechanism or an insulated 'hook stick' made either of wood or fiberglass). Air break switches are designed for switching under load, but there is often a noticeable arc associated with switching. Air break switches can be found either in substations or out on the distribution system - either pole top or in pad-mounted metal enclosures. Air-break switches at currents up to 750 kV, which are generally used at high-voltage power plants and substations. 
   Ø  It is operated on No Load Only.
   Ø  Rated Voltage :- 12 KV
   Ø  Normal Current :- 400 A

Fig: Air Breaker


   Ø  Air-break switches lie in the fact that they are fireproof and explosion proof.
   Ø  Have rapid connect and disconnect operation, and are relatively simple in design.


   Ø  The presence of equipment for the production and storage of compressed-air supplies


An isolator is a non load-breaking switch, and is provides a visible means of isolating a component, such as a circuit breaker, transformer, etc., from the high-voltage lines, whenever it is necessary to perform maintenance of that component. Normally, isolators come in pairs, with one on each side of the component to be isolated. Isolators are only opened after the load current has been broken using a circuit breaker, and must be closed before the circuit breaker is re-closed. To work on, say, a h.v. circuit breaker, the breaker must be tripped, the isolators on either side must be opened and locked off, temporary earths attached to either side of the circuit breaker- to-work card, detailing the maintenance work, must be issued to the crew by the supervising engineer.

Fig: Isolator

Why we use it in Sub-station

   Ø  Its prime purpose is operator safety.
   Ø  It is physical and visual disconnection of the circuit from power supply.
   Ø  Isolators are usually used on both sides of the C.B in order to repair or replace the C.B.
   Ø  It is used to separate any section from rest part of the power supply.

Maintenance of isolator

   Ø  oiling &greasing of moving parts
   Ø  check contact firmness
   Ø  check open / close trials
   Ø  Earthlings switch

Oil Switch

An oil switch is a high-voltage switch whose contacts are opened and closed in oil. The switch is actually immersed in an oil bath and contained in a steel tank. The reason for placing high-voltage switches in oil is that the oil will break the circuit when the switch is opened with high voltages. A separation of the switch contacts does not always break the current flow because an electric arc forms between the contacts if the contacts are opened in oil. The oil will quench the arc. Further more if an arc should form in the oil. It will evaporate part of the oil because of the high temperature and will partially fill the interrupters surrounding the switch contacts with vaporized oil. This vapor develops a pressure in the interrupters which assists in quenching or breaking the arc by elongating the arc.

Fig: Oil switch


Relay is a device when detects the fault supplies information to the breaker for circuit interruption.

Working principal of relay

  Ø  Under normal load current a small current flows in the relay operating coil so breaker remains unchanged.
  Ø  When fault occurs a large amount of current flows in the relay operating coil and it energized the trip coil of the breaker. Hence the breaker is open.

Fig: Scheme of Relay

Why we use it in Sub-station

   Ø  Reliability
   Ø  Sensitivity
   Ø  Selectivity
   Ø  Quickness
   Ø  Non interference with future extension
   Ø  Protection for transformer

Surge arrester

Lightning Arresters or Surge Arresters are always connected in Shunt to the equipment to be protected; they provide a low impedance path for the surge current to the ground. Wave trap is a parallel tuned inductor - capacitor 'tank' circuit made to be resonant at the desired communication frequency. It is the effort to utilize the same transmission line between two substations for the purpose of communications. At this communication frequency the tank circuit provides high impedance and does not allow passing through them & onto the substation bus & into transformers.
   Ø  Lighting arrestor is used for lightning surge protection.
   Ø  Lighting arrestor is used in line side as well as T/F HV & LV side.

Fig: Surge arrester


Fuse is a safety device. It is connected in series with the circuit and protects the electrical apparatus and equipment from damage, when excess current flows. It is one of the simplest protective devices and is used as circuit interrupting device under short circuit condition.

Fig: Fuse

Types of Fuse element

   Ø  Rewire able fuse
   Ø  Cartridge type fuse
   Ø  Drop out fuse
   Ø  High capacity H.R.C. fuse
   Ø  High voltage H.R.C. fuse

Drop Out Fuse Specification

   Ø  11 KV, 50 HZ.
   Ø  Rated Voltage :- 12 KV
   Ø  Rated Normal Current:- 100 A


   Ø  Training Institute for Chemical Industries(TICI)
o   Electrical Substation & Distribution System
o   Electrical Protective Devices & Electrical Symbols


Total Pageviews